
University of Pisa
Master’s Degree in Computer Engineering

Intelligent Systems’ project

Marco Micera
Minou Manafi Varkiani

Intelligent Systems

Academic Year 2016-2017

Contents

1 Introduction 2
1.1 Problem scenario . 2

2 Data editing 3
2.1 Data Description . 3
2.2 Dataset Normalization . 3

3 Pattern Recognition with Neural Networks 5
3.1 Specifications . 5
3.2 First Level . 5

3.2.1 Feature selection . 5
3.2.2 Structure . 6

3.3 Second Level . 6
3.3.1 Feature Selection . 6
3.3.2 Structure . 6

3.4 Neural network creation code . 7
3.5 Performances . 9

4 Mamdani Fuzzy Classifiers 10
4.1 Requirements . 10
4.2 Horizontal scenario - First Level 10

4.2.1 Feature Extraction . 10
4.2.2 Rules . 11

4.3 Horizontal Scenario - Second Level 11
4.3.1 Feature Selection and Feature Extraction 11
4.3.2 Rules . 12

4.4 Mamdani Fuzzy Classifiers - Vertical scenario 12
4.5 Testing and Results . 12

5 Adaptive Neuro-Fuzzy Inference System (ANFIS) Classifiers 13
5.1 Requirements . 13
5.2 Horizontal scenario - First Level 13

5.2.1 Input Structure . 13
5.2.2 Graphs . 13

5.3 Horizontal scenario - Second Level 14
5.3.1 Input Structure . 14
5.3.2 Graphs . 14

5.4 Vertical scenario . 15
5.4.1 Input Structure . 15
5.4.2 Graphs . 15

6 Clustering with Self-Organization Maps (SOM) 16
6.1 Requirements . 16
6.2 Horizontal scenario - First Level 16
6.3 Horizontal scenario - Second Level 18
6.4 Vertical scenario . 18
6.5 Performances . 19

7 Observations 19

1

1 Introduction

During this project we designed and built several systems that are able to rec-
ognize 4 different actions in a restricted area, using an RFID tag: 3 dynamic
actions and one static action.

Dynamic actions:

1. enter in the restricted area;

2. exit from the restricted area;

3. walk in parallel to the gate inside the restricted area without going out.

Static action:

4. stand still close to the restricted area.

These actions are performed by people equipped with an RFID tag oriented
horizontally or vertically with respect to the RFID reader.

1.1 Problem scenario

The way data was collected is shown in the following scheme:

When the RFID reader is turned on, it receives the signals from the two
RFID tags collocated in the area: the fixed static tag and the mobile tag.
Four different experiments were performed. In each experiment the moving per-
son performs one of the three possible dynamic actions. Simultaneously, a static
tag is placed near the doorstep to simulate a person standing still. In addition,
in each experiment, the tag orientation was also taken into account. The ori-
entation of the mobile tag can be horizontal or vertical. The orientation of the
static tag is horizontal in all the experiments. Each experiment was repeated
10 times, and the signals from the static and mobile tags were simultaneously
collected.

2

2 Data editing

2.1 Data Description

The dataset consists of:

• 30 different samples corresponding to dynamic actions, belonging to the
three possible classes (enter, exit, walk in parallel), in the horizontal sce-
nario;

• 30 different samples corresponding to dynamic actions, belonging to the
three possible classes (enter, exit, walk in parallel), in the vertical scenario;

• 60 different samples corresponding to the static action (standing still).

There are 60 .mat files. Each .mat file refers to an action performed with a
given tag orientation, and it contains the signal information related to:

1. The dynamic action collected with the mobile tag;

2. The static action collected with the static tag.

Inside each .mat file the only relevant information is the ‘Inventario’ struc-
ture.
Inside the Inventario structure there are two relevant data structures:

• Tag98BD, which refers to the mobile tag

• Tag98B6, which refers to the static tag

Both tags have the same internal content:

• RSSiTag vector corresponding to the amplitude values (in dBm) of the
RSSI signal received;

• RNSITag vector corresponding to the noise values (in dBm) of the RSSI
signal received;

• FaseTag vector corresponding to the values of the phase of the signal (in
degrees);

• TempoTag corresponding to the sampling times of the signal (in ms).

2.2 Dataset Normalization

One important part of the pre-processing activity is the dataset normalization.
First of all, we created a new array input matrix: each sample consists in 30
averages, computed from the relative initial input samples. This allows us to
have constant size inputs. Then, we normalized all samples values from 0 to 1.

1

2 function result = createMatrix(mean_values)

3 % For every mat file contained in the Misure_VarcoRFID

folder

4 file_names = dir(’Misure_VarcoRFID /*.mat’);

3

5 result = [];

6

7 % At first , dynamic samples

8 for s = 1: length(file_names)

9 file = (importdata(strcat(’Misure_VarcoRFID/’,

file_names(s).name)));

10 result = [result; normalizeInput(file.Inventario.

Tag598BD.RSSITag , mean_values).’];

11 end

12

13 % Then , static samples

14 for s = 1: length(file_names)

15 file = (importdata(strcat(’Misure_VarcoRFID/’,

file_names(s).name)));

16 result = [result; normalizeInput(file.Inventario.

Tag598B6.RSSITag , mean_values).’];

17 end

18 end

1 function normalized_array = normalizeInput(input_array ,

mean_values)

2

3 input_array_size = length(input_array);

4 values_per_average = floor(input_array_size/mean_values)

;

5 normalized_array = zeros(mean_values , 1);

6

7 avg_start = 1;

8 for current_average = 1: mean_values

9 if(current_average == mean_values)

10 avg_end = input_array_size - avg_start + 1;

11 else

12 avg_end = values_per_average;

13 end

14

15 normalized_array(current_average) =

16 mean(input_array(avg_start:avg_start+avg_end

-1,1));

17 avg_start = avg_start + avg_end;

18 end

19

20 mx = max(normalized_array);

21 mn = min(normalized_array);

22 for i = 1: mean_values

23 normalized_array(i) = (normalized_array(i) - mn)/(

mx - mn);

24 end

25 end

4

3 Pattern Recognition with Neural Networks

3.1 Specifications

The aim is to build hierarchical classifiers organized on two levels.
The first level is made by a 2-class classifier which is able to distinguish between
dynamic static actions. This classifier takes as input a signal sample and re-
turns as output the corresponding class label (static or dynamic). The second
level is made by a 3-class classifier which is able to distinguish among the 3
dynamic actions. This classifier takes as input a signal sample which has been
previously classified as dynamic in the first level, and it produces as output the
corresponding class label (enter, exit or walk in parallel).

3.2 First Level

3.2.1 Feature selection

In order to choose the best subset of the provided features, we opted for the
sequentialfs() Matlab function: this function selects a feature subset from
the data matrix ds samples (which stands for dynamic/static samples matrix)
that best predicts data in ds target (which stands for dynamic/static target
matrix), by sequentially selecting features that won’t provide further improve-
ment in prediction. Rows of ds samples correspond to observations (samples);
columns correspond to variables (features). ds target is a column vector con-
taining response values or class labels for each observation in X.
We organized ds samples as follows: the first 60 rows contain dynamic sam-
ples, and last 60 rows contain static ones.
The ds target matrix structure is reported below:

1 %% Dynamic/static target matrix (order: dinamic , static)

2 ds_target = [% samples by rows

3 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0;

4 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0;

5 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0;

6 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0;

7 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0;

8 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0; 1 0;

9 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1;

10 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1;

11 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1;

12 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1;

13 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1;

14 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1;

15];

The sequentialfs() function returns the first input column as the only se-
lected feature: this means that the first neural network only need the first
feature to correctly distinguish among dynamic and static sample.

5

3.2.2 Structure

The following scheme is provided by the view() function.

3.3 Second Level

3.3.1 Feature Selection

The sample and target matrix now change: they only have to contain those
samples representing dynamic inputs.

1 %% Dynamic samples matrix

2 d_samples = ds_samples (1:60 , :);

3

4 %% Dynamic target matrix (order: in , out , pass)

5 d_target = [% samples by rows

6 1 0 0; 1 0 0; 1 0 0; 1 0 0; 1 0 0;

7 1 0 0; 1 0 0; 1 0 0; 1 0 0; 1 0 0;

8 0 1 0; 0 1 0; 0 1 0; 0 1 0; 0 1 0;

9 0 1 0; 0 1 0; 0 1 0; 0 1 0; 0 1 0;

10 0 0 1; 0 0 1; 0 0 1; 0 0 1; 0 0 1;

11 0 0 1; 0 0 1; 0 0 1; 0 0 1; 0 0 1;

12 1 0 0; 1 0 0; 1 0 0; 1 0 0; 1 0 0;

13 1 0 0; 1 0 0; 1 0 0; 1 0 0; 1 0 0;

14 0 1 0; 0 1 0; 0 1 0; 0 1 0; 0 1 0;

15 0 1 0; 0 1 0; 0 1 0; 0 1 0; 0 1 0;

16 0 0 1; 0 0 1; 0 0 1; 0 0 1; 0 0 1;

17 0 0 1; 0 0 1; 0 0 1; 0 0 1; 0 0 1;

18];

The sequentialfs() function selects 3 features for the d samples matrix.

3.3.2 Structure

This image is provided by the view() function.

6

3.4 Neural network creation code

1 function [net_1 , net_2] = createNN ()

2 %% Creating the first neural network

3

4 global ds_sf ds_target;

5

6 % Samples by columns

7 ds_sf_by_columns = ds_sf ’;

8 ds_target_by_columns = ds_target ’;

9

10 % Creating it

11 trainFcn = ’trainscg ’;

12 hiddenLayerSize = 10;

13 net_1 = patternnet(hiddenLayerSize , trainFcn);

14

15 % Training it

16 net_1.trainParam.showWindow = false; % no GUI

17 [net_1 , training_record] = train(net_1 , ds_sf_by_columns

, ds_target_by_columns);

18

19 % Testing it

20 result = net_1(ds_sf_by_columns);

21 errors = gsubtract(ds_target_by_columns , result);

22 % performance = perform(net , target , result)

23 % target_indexes = vec2ind(target);

24 % result_indexes = vec2ind(result);

25 % percentErrors = sum(target_indexes ~= result_indexes)/

numel(target_indexes);

26

27 % View the Network

28 view(net_1)

29

30 % Plots

31 figure , plotperform(training_record)

32 figure , plottrainstate(training_record)

33 figure , ploterrhist(errors)

34 figure , plotconfusion(ds_target_by_columns , result)

35 figure , plotroc(ds_target_by_columns , result)

36

37 %% Creating the second neural network

38

39 global d_sf d_target;

40

41 % Samples by columns

42 d_sf_by_columns = d_sf ’;

43 d_target_by_columns = d_target ’;

44

45 % Creating it

46 trainFcn = ’trainscg ’;

47 hiddenLayerSize = 20;

48 net_2 = patternnet(hiddenLayerSize , trainFcn);

49

50 % Training it

7

51 net_2.trainParam.showWindow = false; % no GUI

52 [net_2 , training_record] = train(net_2 , d_sf_by_columns ,

d_target_by_columns);

53

54 % Testing it

55 result = net_2(d_sf_by_columns);

56 errors = gsubtract(d_target_by_columns , result);

57 % performance = perform(net , target , result)

58 % target_indexes = vec2ind(target);

59 % result_indexes = vec2ind(result);

60 % percentErrors = sum(target_indexes ~= result_indexes)/

numel(target_indexes);

61

62 % View the Network

63 view(net_2)

64

65 % Plots

66 figure , plotperform(training_record)

67 figure , plottrainstate(training_record)

68 figure , ploterrhist(errors)

69 figure , plotconfusion(d_target_by_columns , result)

70 figure , plotroc(d_target_by_columns , result)

71

72 %% Cleaning

73 clear criteriaFunctionHandler;

74 end

8

3.5 Performances

We created some different networks and we compared the results to select the
best one in order to find the best trade off between accuracy of results and min-
imum computational costs. We simulated the nets with three different number
of hidden layers (10, 15 and 20) using the train function.

For the first layer, 10 hidden neurons are enough to ensure the best perfor-
mance:

For the second layer we obtained the following confusion matrices:

We chose the third option (hiddenLayerSize = 20) because of the great
increase in terms of performances (from ∼ 76% to ∼ 93%).

9

4 Mamdani Fuzzy Classifiers

4.1 Requirements

The objective is to build two fuzzy hierarchical classifiers (one for the horizontal
and one for the vertical scenario), organized on two levels as explained before.
This scenario is composed by two levels: one for the dynamic/static classification
and one for the dynamic actions classification.1

For this part, we used the Fuzzy Logic Designer app of the Fuzzy Logic tool-
box, as required.

4.2 Horizontal scenario - First Level

The schema for the first level of the horizontal scenario is the following:

4.2.1 Feature Extraction

For each input signal, we extracted the following features:

• Standard Deviation

• Mean Value

Subsequently we calculated, for each feature column (we have 90 values for
each one), the standard deviation and the mean value and we used this values
to create input membership functions, that will discriminate against static and
dynamic signals.

1The static tag is horizontal in all the experiments

10

4.2.2 Rules

Through the following rules it was possible to compute the output:

• if (std is dynamic) and (mean is dynamic), then (Out is dynamic)

• if (std is static) and (mean is static), then (Out is static)

These rules were codifed on Matlab in a m + n + 2 column matrix, with m
inputs and n outputs. Each column between m + n columns contains a numeric
encoding that refers to the membership function index concerning that variable.
The m + n + 1 column refers to the weight that should be applied to the rule:
generally, it is a number between 0 and 1. Otherwise, the m + n + 2 column
is referred to the driver before the rule: it is set 1 if there is an ”AND”, or 2 if
there is an ”OR”.

rulelist =

[
1 1 1
2 2 1

]
(1)

Depending on the input sample membership degree, the outcome changes
accordingly to the rules previously shown.

4.3 Horizontal Scenario - Second Level

The general schema for the second level of the horizontal scenario is the same
as before.
The output has now the following shape:

4.3.1 Feature Selection and Feature Extraction

For this level (which is more complex than the first one) we computed the
features standard deviation and mean value only by using the columns returned
by the sequentialfs used in the previous part for the neural networks.

11

4.3.2 Rules

The rules for the second level are the following:

• if (std is in) and (mean is in) then (Out is in)

• if (std is out) and (mean is out) then (Out is out)

• if (std is pass) and (mean is pass) then (Out is pass)

Rules matrix:

rulelist =

1 1 1
2 2 1
3 3 1

 (2)

4.4 Mamdani Fuzzy Classifiers - Vertical scenario

The vertical scenario is the same as second level horizontal scenario, mutatis
mutandis.

4.5 Testing and Results

We obtained the following result (right results/total number of inputs):

• First level of horizontal scenario: ∼ 98%

• Second level of horizontal scenario: ∼ 88%

• Vertical scenario : ∼ 50%

We obtained these results by performing 10 different tests and by calculating
the resulting mean.

12

5 Adaptive Neuro-Fuzzy Inference System (AN-
FIS) Classifiers

5.1 Requirements

The objective here is to build two fuzzy hierarchical classifiers (one for the
horizontal and one for the vertical scenario), organized on two levels as explained
before.

5.2 Horizontal scenario - First Level

We used the Neuro-Fuzzy Designer app of the Fuzzy Logic toolbox.

5.2.1 Input Structure

To train the FIS, we begin by loading a training data set that contains the
desired input-output data of the system.

1 %% Dynamic/static horizontal target matrix

2 anfis_ds_h_target = [

3 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; % dynamic

4 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;

5 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;

6 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; % static

7 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;

8 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;

9 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;

10 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;

11 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;

12];

13

14

15

16 %% Dynamic/static horizontal selected features + targets

matrix

17 anfis_ds_h_sf = [ds_h_samples (:, find(ds_h_sf_indexes))

anfis_ds_h_target];

5.2.2 Graphs

13

5.3 Horizontal scenario - Second Level

5.3.1 Input Structure

1 %% Dynamic horizontal target matrix

2 anfis_d_h_target = [

3 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; % in

4 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; % out

5 2; 2; 2; 2; 2; 2; 2; 2; 2; 2; % pass

6];

7

8 %% Dynamic horizontal selected features + targets matrix

9 anfis_d_h_sf = [d_h_samples (:, find(d_h_sf_indexes))

anfis_d_h_target];

5.3.2 Graphs

14

5.4 Vertical scenario

5.4.1 Input Structure

1 %% Vertical target matrix

2 anfis_v_target = anfis_d_h_target;

3

4 %% Vertical selected features + targets matrix

5 anfis_v_sf = [v_samples(:, find(v_sf_indexes))

anfis_v_target];

5.4.2 Graphs

15

6 Clustering with Self-Organization Maps (SOM)

6.1 Requirements

For each scenario (horizontal and vertical), we want to build two clustering
models:

1. the first in sable to distinguish between static and dynamic actions,

2. the second is able to distinguish among the three dynamic activities (enter,
exit, walk in parallel).

6.2 Horizontal scenario - First Level

We used the Neural Clustering App. The network creation is contained in the
som ds h creation.m file, which is reported below:

1 %% Creating a Self -Organizing Map for dynamic/static

discrimination

2 global som_net_1 som_1_clusters;

3 som_net_1 = selforgmap ([10 10]);

4

5 %% Choosing Plot Functions

6 som_net_1.plotFcns = {

7 ’plotsomtop ’,’plotsomnc ’,’plotsomnd ’, ...

8 ’plotsomplanes ’, ’plotsomhits ’, ’plotsompos ’

9 };

10

11 %% Training

12 global ds_h_samples;

13 [som_net_1 , ~] = train(som_net_1 , ds_h_samples ’);

14

15 %% Clustering

16

17 % SOM weights

18 som_1_weights = som_net_1.IW{1, 1};

19

20 % ’ward ’: Inner squared distance (minimum variance algorithm

),

21 % appropriate for Euclidean distances only

22 som_1_linkages = linkage(som_1_weights , ’ward’);

23

24 % som_dendrogram = dendrogram(som_1_linkages , 0);

25

26 % Clusters creation

27 som_1_clusters = cluster(som_1_linkages , ’maxclust ’, 2);

28

29 %% som_net_1 plots

30 % figure , plotsomtop(som_net_1)

31 % figure , plotsomnc(som_net_1)

32 % figure , plotsomnd(som_net_1)

33 % figure , plotsomplanes(som_net_1)

34 % figure , plotsomhits(som_net_1 , ds_h_samples ’)

35 % figure , plotsompos(som_net_1 , ds_h_samples ’)

16

After training the SOM, we obtained the network’s weights thanks to this
code line:

1 som_1_weights = som_net_1.IW{1, 1};

Then, thanks to the linkage() function, we obtained the som 1 linkages
matrix in which the agglomerative hierarchical cluster tree formation process is
reported.

1 som_1_linkages = linkage(som_1_weights , ’ward’);

The ’ward’ parameters specifies the algorithm for computing distance be-
tween clusters. In this case, ’ward’ stands for the inner squared distance (mini-
mum variance algorithm): the Matlab documentation states that this is appro-
priate for Euclidean distances only. The som 1 linkages matrix can be better
visualized with a dendrogram:

With the following instruction, 2 clusters can be created (one for dynamic
action, the other one for static ones):

1 % Clusters creation

2 som_1_clusters = cluster(som_1_linkages , ’maxclust ’, 2);

The som 1 clusters matrix then contains, for each SOM neuron (a hundred
of them), the corresponding output cluster identifier. For this reason, during
the input computation, this instruction is performed:

1 som_ds_h_output = som_1_clusters(find(som_net_1(input.’)),

1);

The following code represents the first level of the SOM for horizontal sam-
ples:

1 % Dynamic/static Self -Organizing Map

2

3 function result = som_ds_h(input)

4 %% Checking input dimension

5 if size(input , 1) ~= 1

17

6 error(’Wrong input row size’);

7 elseif size(input , 2) ~= 30

8 error(’Wrong input column size’);

9 end

10

11 %% Input computation

12 global som_net_1 som_1_clusters;

13 som_ds_h_output = som_1_clusters(find(som_net_1(input.’)

), 1);

14 result = som_ds_h_output;

15

16 if som_ds_h_output == 1

17 disp(’The given input belongs to the first cluster.’

);

18 elseif som_ds_h_output == 2

19 disp(’The given input belongs to the second cluster.

’);

20 else

21 disp(’The given input does not belong to any cluster

.’);

22 end

23

24 %% Cleaning

25 clear training_record;

26 end

A simple test script may consists in the following code:

1 % Testing the SOM for all possible dynamic/static input

samples

2

3 global ds_h_samples;

4

5 som_ds_h_creation;

6 for i = 1:size(ds_h_samples , 1)

7 ans = som_ds_h(ds_h_samples(i, :));

8 end

9 clear i ans;

6.3 Horizontal scenario - Second Level

All operations are made for the second level: this time, the classifier has to
distinguish among entering, exiting and passing actions. This means that the
SOM training is performed just with the relative samples, and then 3 clusters
are formed.

6.4 Vertical scenario

This case is completely equivalent to the second level of the horizontal scenario,
as in the vertical one, no static actions are registered.

18

6.5 Performances

• First level of the horizontal scenario: ∼ 89%

• Second level of the horizontal scenario: ∼ 100%

• Vertical scenario: ∼ 77%

7 Observations

We have noticed that vertical scenario performances are not good enough com-
pared to the horizontal ones.
This could mean that vertical samples were not correctly measured, or that they
could have been affected by some errors.
Therefore, their use do not certainly bring any advantage in the action decision
process.

19

	Pagina vuota
	Pagina vuota

